Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Redox Biol ; 63: 102752, 2023 07.
Article in English | MEDLINE | ID: covidwho-2324519

ABSTRACT

Viral infection-induced cell death has long been considered as a double-edged sword in the inhibition or exacerbation of viral infections. Patients with severe Coronavirus Disease 2019 (COVID-19) are characterized by multiple organ dysfunction syndrome and cytokine storm, which may result from SARS-CoV-2-induced cell death. Previous studies have observed enhanced ROS level and signs of ferroptosis in SARS-CoV-2 infected cells or specimens of patients with COVID-19, but the exact mechanism is not clear yet. Here, we find SARS-CoV-2 ORF3a sensitizes cells to ferroptosis via Keap1-NRF2 axis. SARS-CoV-2 ORF3a promotes the degradation of NRF2 through recruiting Keap1, thereby attenuating cellular resistance to oxidative stress and facilitated cells to ferroptotic cell death. Our study uncovers that SARS-CoV-2 ORF3a functions as a positive regulator of ferroptosis, which might explain SARS-CoV-2-induced damage in multiple organs in COVID-19 patients and imply the potential of ferroptosis inhibition in COVID-19 treatment.


Subject(s)
COVID-19 , Ferroptosis , Humans , SARS-CoV-2 , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/genetics , COVID-19 Drug Treatment
2.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2281048

ABSTRACT

The indispensable role of the SARS-CoV-2 main protease (Mpro) in the viral replication cycle and its dissimilarity to human proteases make Mpro a promising drug target. In order to identify the non-covalent Mpro inhibitors, we performed a comprehensive study using a combined computational strategy. We first screened the ZINC purchasable compound database using the pharmacophore model generated from the reference crystal structure of Mpro complexed with the inhibitor ML188. The hit compounds were then filtered by molecular docking and predicted parameters of drug-likeness and pharmacokinetics. The final molecular dynamics (MD) simulations identified three effective candidate inhibitors (ECIs) capable of maintaining binding within the substrate-binding cavity of Mpro. We further performed comparative analyses of the reference and effective complexes in terms of dynamics, thermodynamics, binding free energy (BFE), and interaction energies and modes. The results reveal that, when compared to the inter-molecular electrostatic forces/interactions, the inter-molecular van der Waals (vdW) forces/interactions are far more important in maintaining the association and determining the high affinity. Given the un-favorable effects of the inter-molecular electrostatic interactions-association destabilization by the competitive hydrogen bond (HB) interactions and the reduced binding affinity arising from the un-compensable increase in the electrostatic desolvation penalty-we suggest that enhancing the inter-molecular vdW interactions while avoiding introducing the deeply buried HBs may be a promising strategy in future inhibitor optimization.


Subject(s)
Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Humans , COVID-19 , Molecular Docking Simulation , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
3.
Vaccines (Basel) ; 11(2)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225820

ABSTRACT

Since the emergence of SARS-CoV-2, maintaining healthcare worker (HCW) health and safety has been fundamental to responding to the global pandemic. Vaccination with mRNA-base vaccines targeting SARS-CoV-2 spike protein has emerged as a key strategy in reducing HCW susceptibility to SARS-CoV-2, however, neutralizing antibody responses subside with time and may be influenced by many variables. We sought to understand the dynamics between vaccine products, prior clinical illness from SARS-CoV-2, and incidence of vaccine-associated adverse reactions on antibody decay over time in HCWs at a university medical center. A cohort of 296 HCWs received standard two-dose vaccination with either bnt162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna) and were evaluated after two, six, and nine months. Subjects were grouped by antibody decay curve into steep antibody decliners gentle decliners. Vaccination with mRNA-1273 led to more sustained antibody responses compared to bnt162b2. Subjects experiencing vaccine-associated symptoms were more likely to experience a more prolonged neutralizing antibody response. Subjects with clinical SARS-CoV-2 infection prior to vaccination were more likely to experience vaccination-associated symptoms after first vaccination and were more likely to have a more blunted antibody decay. Understanding factors associated with vaccine efficacy may assist clinicians in determining appropriate vaccine strategies in HCWs.

4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(5): 502-508, 2022 May.
Article in Chinese | MEDLINE | ID: covidwho-1903520

ABSTRACT

OBJECTIVE: To analyze the relationship between blood electrolytes and the prognosis of patients with severe coronavirus disease 2019 (COVID-19) and to provide assistance for clinical decision-making. METHODS: The clinical data of patients with severe COVID-19 admitted to intensive care unit (ICU) of the Wuhan Third Hospital by the Shanghai aid-Hubei medical team from January 21 to March 4, 2020 were collected. Excluding ineligible patients, 110 patients were finally enrolled. The patients' gender, age, temperature, heart rate, systolic and diastolic blood pressure, clinical symptoms at admission, time of symptom onset, duration of fever, and relevant indicators at admission to ICU (including blood potassium, chloride, sodium, calcium, phosphorus, and magnesium, etc.) and prognosis were analyzed. The patients were grouped by blood potassium or calcium levels or blood potassium/calcium ratio. The Kaplan-Meier survival curves were used to analyze the survival of patients in each group. The relationship between the potassium/calcium ratio and the prognosis was analyzed using restricted cubic spline plots. The relationship between each index in the different models and the prognosis was analyzed using Cox regression models. RESULTS: Among 110 severe COVID-19 patients, 78 cases survived, and 32 cases died. Compared with the surviving group, patients in the death group had higher blood potassium levels [mmol/L: 4.25 (3.80, 4.65) vs. 3.90 (3.60, 4.20), P < 0.05] and lower blood calcium levels (mmol/L: 2.00±0.14 vs. 2.19±0.18, P < 0.05). The Kaplan-Meier survival curves showed that patients in the potassium > 4.2 mmol/L group had a worse prognosis than the potassium < 3.8 mmol/L group and the potassium 3.8-4.2 mmol/L group (P = 0.011), patients in the calcium > 2.23 mmol/L group had a better prognosis than the calcium < 2.03 mmol/L group and the calcium 2.03-2.23 mmol/L group, and the lower calcium group had a worse prognosis (P = 0.000 15). Cox regression analysis showed that the hazard ratio (HR) of blood potassium and calcium were 2.08 and 0.01, respectively, in model 1 (single blood potassium or calcium) and in model 2 (model 1 plus age and gender), the HR of blood potassium and calcium were 1.98 and 0.01 respectively, which were significantly associated with patient prognosis (all P < 0.05). Patients in the group with the potassium/calcium ratio > 1.9 had higher blood potassium levels and a higher proportion of mechanical ventilation, lower calcium levels and lower proportion of survival, and longer time of ICU admission compared with the groups with the potassium/calcium ratio < 1.7 and 1.7-1.9. The Kaplan-Meier survival curves showed that the survival rate of the potassium/calcium ratio > 1.9 group was the lowest (P < 0.000 1), and there was no statistically significant difference in survival between the potassium/calcium ratio < 1.7 group and the potassium/calcium ratio 1.7-1.9 group. A restricted cubic spline plot corrected for age and gender showed that patients in the potassium/calcium ratio > 1.8 group had HR values > 1. Cox regression analysis corrected for other indicators showed that the potassium/calcium ratio was still associated with patient prognosis (HR = 4.85, P = 0.033). CONCLUSION: Blood potassium, calcium, and the potassium/calcium ratio at ICU admission are related to the prognosis of patients with severe COVID-19, and the potassium/calcium ratio is an independent risk factor for the death of patients. The higher the potassium/calcium ratio, the worse the prognosis of patients.


Subject(s)
COVID-19 , Sepsis , Calcium , China , Electrolytes , Humans , Potassium , Prognosis , Retrospective Studies
5.
Energies ; 15(11):3851, 2022.
Article in English | ProQuest Central | ID: covidwho-1892781

ABSTRACT

Generally, PV (photovoltaic) modules are known as devices which are used semi-permanently for more than 20 years, but the electrical performance and lifespan of PV modules can be significantly degraded due to various environmental factors. Thus, a proper evaluation method for aging phenomenon of PV modules is required. Although there already are methods which compare adjusted PV output power based on STC (standard test condition) with initial PV module specification, or perform direct comparison by conducting the test under STC, there are issues with objectivity or efficiency in the existing evaluation method of aging phenomenon due to the data distortion while adjusting measured data or difficulties in implementation. Therefore, in order to overcome the above-mentioned disadvantage of the existing evaluation method for deterioration in PV modules and evaluate the aging characteristics of PV modules based on on-site measurement data in an accurate and efficient manner, this paper implements a test device for aging diagnosis to measure and collect actual data from a PV module section, and presents a modeling of data analysis for aging phenomenon with MATLAB S/W in order to minimize the variability of PV output, communication error, delay, etc. Furthermore, this paper confirms the usefulness of the presented test device for aging diagnosis of the PV modules which is accurately evaluated by considering on-site measurement of PV output power by season.

6.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: covidwho-1785539

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (RBDCoV2) has a higher binding affinity to the human receptor angiotensin-converting enzyme 2 (ACE2) than the SARS-CoV RBD (RBDCoV). Here, we performed molecular dynamics (MD) simulations, binding free energy (BFE) calculations, and interface residue contact network (IRCN) analysis to explore the mechanistic origin of different ACE2-binding affinities of the two RBDs. The results demonstrate that, when compared to the RBDCoV2-ACE2 complex, RBDCoV-ACE2 features enhanced dynamicsand inter-protein positional movements and increased conformational entropy and conformational diversity. Although the inter-protein electrostatic attractive interactions are the primary determinant for the high ACE2-binding affinities of both RBDs, the significantly enhanced electrostatic attractive interactions between ACE2 and RBDCoV2 determine the higher ACE2-binding affinity of RBDCoV2 than of RBDCoV. Comprehensive comparative analyses of the residue BFE components and IRCNs between the two complexes reveal that it is the residue changes at the RBD interface that lead to the overall stronger inter-protein electrostatic attractive force in RBDCoV2-ACE2, which not only tightens the interface packing and suppresses the dynamics of RBDCoV2-ACE2, but also enhances the ACE2-binding affinity of RBDCoV2. Since the RBD residue changes involving gain/loss of the positively/negatively charged residues can greatly enhance the binding affinity, special attention should be paid to the SARS-CoV-2 variants carrying such mutations, particularly those near or at the binding interfaces with the potential to form hydrogen bonds and/or salt bridges with ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Humans , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
7.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1721237

ABSTRACT

BACKGROUND: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). METHODS: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). FINDINGS: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. INTERPRETATION: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. FUNDING: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
8.
World J Clin Cases ; 9(30): 9050-9058, 2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1524638

ABSTRACT

BACKGROUND: Since December 2019, there have been many new cases of coronavirus pneumonia in Wuhan, Hubei Province, which has gradually spread throughout the country. AIM: To explore our hospital's innovative management system to ensure the efficient operation of fever clinics during the epidemic, since controlling the spread of disease is an important way to prevent and control the epidemic. METHODS: In total, 200 outpatients with fever at our hospital between November 2019 and July 2020 were selected and allocated into two groups. RESULTS: The fever clinic in our hospital operated smoothly, and infection with the novel coronavirus disease (COVID-19) has not been reported in our hospital. Additionally, we did not have any cases of missed diagnosis. The awareness regarding COVID-19 infection sources, transmission routes, early symptoms, and preventive measures was significantly higher in our fever clinic than in those of the pre-management group. CONCLUSION: "An integrated system, three separate responsibilities" ensured the efficient functioning of our fever outpatient clinic and early screening of COVID-19 cases, which effectively curbed the transmission of COVID-19 and hence prevented COVID-19 pneumonia epidemic in our hospital, ultimately achieving the maximum effect of epidemic prevention and control.

9.
Healthcare (Basel) ; 9(9)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1409291

ABSTRACT

This observational study aims to investigate the early disease patterns of coronavirus disease 2019 (COVID-19) in Southeast Asia, consequently providing historical experience for further interventions. Data were extracted from official websites of the WHO and health authorities of relevant countries. A total of 1346 confirmed cases of COVID-19, with 217 recoveries and 18 deaths, were reported in Southeast Asia as of 16 March 2020. The basic reproductive number (R0) of COVID-19 in the region was estimated as 2.51 (95% CI:2.31 to 2.73), and there were significant geographical variations at the subregional level. Early transmission dynamics were examined with an exponential regression model: y = 0.30e0.13x (p < 0.01, R2 = 0.96), which could help predict short-term incidence. Country-level disease burden was positively correlated with Human Development Index (r = 0.86, p < 0.01). A potential early shift in spatial diffusion patterns and a spatiotemporal cluster occurring in Malaysia and Singapore were detected. Demographic analyses of 925 confirmed cases indicated a median age of 44 years and a sex ratio (male/female) of 1.25. Age may play a significant role in both susceptibilities and outcomes. The COVID-19 situation in Southeast Asia is challenging and unevenly geographically distributed. Hence, enhanced real-time surveillance and more efficient resource allocation are urgently needed.

10.
International Journal of Infectious Diseases ; 95:376-383, 2020.
Article in English | CAB Abstracts | ID: covidwho-1409676

ABSTRACT

Objectives: This study aimed to compare clinical courses and outcomes between pregnant and reproductive-aged non-pregnant women with COVID-19, and to assess the vertical transmission potential of COVID-19 in pregnancy.

11.
Front Public Health ; 9: 685315, 2021.
Article in English | MEDLINE | ID: covidwho-1359257

ABSTRACT

Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region. Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model. Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10-3 (1.292 × 10-3 to 1.613 × 10-3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia. Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.


Subject(s)
COVID-19 , SARS-CoV-2 , Asia, Southeastern/epidemiology , Bayes Theorem , Genome, Viral/genetics , Humans , Phylogeny
12.
Front Immunol ; 12: 716075, 2021.
Article in English | MEDLINE | ID: covidwho-1359192

ABSTRACT

The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.


Subject(s)
Asymptomatic Diseases , COVID-19/immunology , Carrier State/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Transcriptome/genetics , Adult , Carrier State/virology , Complement Activation/immunology , Female , Gene Expression Profiling , Humans , Inflammation/immunology , Influenza, Human/complications , Interferons/blood , Interferons/immunology , Male , Middle Aged , NF-kappa B/metabolism , Transcriptome/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
14.
Opt Lett ; 46(10): 2344-2347, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1229026

ABSTRACT

Rapid screening of red blood cells for active infection of COVID-19 is presented using a compact and field-portable, 3D-printed shearing digital holographic microscope. Video holograms of thin blood smears are recorded, individual red blood cells are segmented for feature extraction, then a bi-directional long short-term memory network is used to classify between healthy and COVID positive red blood cells based on their spatiotemporal behavior. Individuals are then classified based on the simple majority of their cells' classifications. The proposed system may be beneficial for under-resourced healthcare systems. To the best of our knowledge, this is the first report of digital holographic microscopy for rapid screening of COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/blood , Deep Learning , Erythrocytes/pathology , Holography/instrumentation , SARS-CoV-2 , COVID-19/classification , Humans , Image Enhancement/instrumentation , Microscopy/instrumentation , Reproducibility of Results , Sensitivity and Specificity
15.
Water Res ; 193: 116873, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1046109

ABSTRACT

In 2020, a sudden COVID-19 pandemic unprecedentedly weakened anthropogenic activities and as results minified the pollution discharge to aquatic environment. In this study, the impacts of the COVID-19 pandemic on aquatic environment of the southern Jiangsu (SJ) segment of Beijing-Hangzhou Grand Canal (SJ-BHGC) were explored. Fluorescent component similarity and high-performance size exclusion chromatography analyses indicated that the textile printing and dyeing wastewater might be one of the main pollution sources in SJ-BHGC. The water quality parameters and intensities of fluorescent components (WT-C1(20) and WT-C2(20)) decreased to low level due to the collective shutdown of all industries in SJ region during the Spring Festival holiday and the outbreak of the domestic COVID-19 pandemic in China (January 24th to late February, 2020). Then, they presented a gradual upward trend after the domestic epidemic was under control. In mid-March, the outbreak of the international COVID-19 pandemic hit the garment export trade of China and consequently inhibited the production activities of textile printing and dyeing industry (TPDI) in SJ region. After peaking on March 26th, the intensities of WT-C1(20) and WT-C2(20) decreased again with changed intensity ratio until April 12th. During the study period (135 days), correlation analysis revealed that WT-C1 and WT-C2 possessed homology and their fluorescence intensities were highly positively correlated with conductivity and CODMn. With fluorescence fingerprint (FF) technique, this study not only excavated the characteristics and pollution causes of water body in SJ-BHGC, but also provided novel insights into impacts of the COVID-19 pandemic on production activities of TPDI and aquatic environment of SJ-BHGC. The results of this study indicated that FF technique was an effective tool for precise supervision of water environment.


Subject(s)
COVID-19 , Pandemics , Beijing/epidemiology , China/epidemiology , Humans , SARS-CoV-2
17.
Emerg Microbes Infect ; 9(1): 1474-1488, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-599992

ABSTRACT

The mutations in the SARS-CoV-2 virus genome during COVID-19 dissemination are unclear. In 788 COVID-19 patients from Zhejiang province, we observed decreased rate of severe/critical cases compared with patients in Wuhan. For mechanisms exploration, we isolated one strain of SARS-CoV-2 (ZJ01) from a mild COVID-19 patient. Thirty-five specific gene mutations were identified. Phylogenetic and relative synonymous codon usage analysis suggested that ZJ01 may be a potential evolutionary branch of SARS-CoV-2. We classified 54 global virus strains based on the base (C or T) at positions 8824 and 28247 while ZJ01 has T at both sites. The prediction of the Furin cleavage site (FCS) and sequence alignment indicated that the FCS may be an important site of coronavirus evolution. ZJ01 mutations identified near the FCS (F1-2) caused changes in the structure and electrostatic distribution of the S surface protein, further affecting the binding capacity of Furin. Single-cell sequencing and ACE2-Furin co-expression results confirmed that the Furin expression was especially higher in glands, liver, kidneys, and colon. The evolutionary pattern of SARS-CoV-2 towards FCS formation may result in its clinical symptom becoming closer to HKU-1 and OC43 caused mild flu-like symptoms, further showing its potential in differentiating into mild COVID-19 subtypes.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Furin/metabolism , Pneumonia, Viral/virology , Adult , Betacoronavirus/genetics , COVID-19 , China/epidemiology , Codon , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Disease Progression , Evolution, Molecular , Female , Humans , Male , Middle Aged , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL